Complete Riemannian manifolds with Killing-Ricci and Codazzi-Ricci tensors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73614185" target="_blank" >RIV/61989592:15310/22:73614185 - isvavai.cz</a>
Result on the web
<a href="https://journals.kantiana.ru/upload/iblock/d60/10_112-117.pdf" target="_blank" >https://journals.kantiana.ru/upload/iblock/d60/10_112-117.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5922/0321-4796-2022-53-10" target="_blank" >10.5922/0321-4796-2022-53-10</a>
Alternative languages
Result language
angličtina
Original language name
Complete Riemannian manifolds with Killing-Ricci and Codazzi-Ricci tensors
Original language description
The purpose of this paper is to prove of Liouville type theorems, i. e., theorems on the non-existence of Killing-Ricci and Codazzi-Ricci tensors on complete non-compact Riemannian manifolds. Our results complement the two classical vanishing theorems from the last chapter of famous Besse’s monograph on Einstein manifolds.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Дифференциальная геометрия многообразий фигур
ISSN
0321-4796
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
11
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
6
Pages from-to
112-117
UT code for WoS article
—
EID of the result in the Scopus database
—