All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Complete Riemannian manifolds with Killing-Ricci and Codazzi-Ricci tensors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73614185" target="_blank" >RIV/61989592:15310/22:73614185 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.kantiana.ru/upload/iblock/d60/10_112-117.pdf" target="_blank" >https://journals.kantiana.ru/upload/iblock/d60/10_112-117.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5922/0321-4796-2022-53-10" target="_blank" >10.5922/0321-4796-2022-53-10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Complete Riemannian manifolds with Killing-Ricci and Codazzi-Ricci tensors

  • Original language description

    The purpose of this paper is to prove of Liouville type theorems, i. e., theorems on the non-existence of Killing-Ricci and Codazzi-Ricci tensors on complete non-compact Riemannian manifolds. Our results complement the two classical vanishing theorems from the last chapter of famous Besse’s monograph on Einstein manifolds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Дифференциальная геометрия многообразий фигур

  • ISSN

    0321-4796

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    6

  • Pages from-to

    112-117

  • UT code for WoS article

  • EID of the result in the Scopus database