From infinitesimal harmonic transformations to Ricci solitons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33145775" target="_blank" >RIV/61989592:15310/13:33145775 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
From infinitesimal harmonic transformations to Ricci solitons
Original language description
A Ricci soliton is a Riemannian metric g on a manifold together with a vector field ksí that are related in terms of the Lie derivative and the Ricci tensor of the metric by -2Ric=L ksí g+2lambdag for some constant lambda; Einstein manifolds are a particular case. The concept of Ricci soliton is related to harmonic mappings, namely, the vector field ksí making g into a metric of the Ricci soliton is necessarily an infinitesimal harmonic transformation. Moreover, on a compact manifold, the field ksí is gradient, ksí=gradF. The authors give examples of infinitesimal harmonic transformations and prove existence theorems for Ricci solitons on compact and non-compact manifolds.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
0862-7959
e-ISSN
—
Volume of the periodical
138
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
12
Pages from-to
25-36
UT code for WoS article
—
EID of the result in the Scopus database
—