All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018387" target="_blank" >RIV/62690094:18470/21:50018387 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926224521000085?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.difgeo.2021.101724" target="_blank" >10.1016/j.difgeo.2021.101724</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lorentzian manifolds with shearfree congruences and Kahler-Sasaki geometry

  • Original language description

    We study Lorentzian manifolds (M, g) of dimension n &gt;= 4, equipped with a maximally twisting shearfree null vector field p, for which the leaf space S=M/{exptp} is a smooth manifold. If n = 2k, the quotient S = M/{exptp} is naturally equipped with a subconformal structure of contact type and, in the most interesting cases, it is a regular Sasaki manifold projecting onto a quantisable Kahler manifold of real dimension 2k - 2. Going backwards through this line of ideas, for any quantisable Kahler manifold with associated Sasaki manifold S, we give the local description of all Lorentzian metrics g on the total spaces M of A-bundles pi : M -&gt; S, A = S-1, R, such that the generator of the group action is a maximally twisting shearfree g-null vector field p. We also prove that on any such Lorentzian manifold (M, g) there exists a non-trivial generalised electromagnetic plane wave having pas propagating direction field, a result that can be considered as a generalisation of the classical 4-dimensional Robinson Theorem. We finally construct a 2-parametric family of Einstein metrics on a trivial bundle M = R x S for any prescribed value of the Einstein constant. If dim M = 4, the Ricci flat metrics obtained in this way are the well-known Taub-NUT metrics. (C) 2021 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS

  • ISSN

    0926-2245

  • e-ISSN

  • Volume of the periodical

    75

  • Issue of the periodical within the volume

    April

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    32

  • Pages from-to

    "Article Number: 101724"

  • UT code for WoS article

    000632451300011

  • EID of the result in the Scopus database

    2-s2.0-85100743702