Infinitesimal Transformations of Locally Conformal Kähler Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F19%3A00001689" target="_blank" >RIV/75081431:_____/19:00001689 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26110/19:PU133062
Result on the web
<a href="https://www.mdpi.com/2227-7390/7/8/658" target="_blank" >https://www.mdpi.com/2227-7390/7/8/658</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math7080658" target="_blank" >10.3390/math7080658</a>
Alternative languages
Result language
angličtina
Original language name
Infinitesimal Transformations of Locally Conformal Kähler Manifolds
Original language description
The article is devoted to infinitesimal transformations. We have obtained that LCK-manifolds do not admit nontrivial infinitesimal projective transformations. Then we study infinitesimal conformal transformations of LCK-manifolds. We have found the expression for the Lie derivative of a Lee form. We have also obtained the system of partial differential equations for the transformations, and explored its integrability conditions. Hence we have got the necessary and sufficient conditions in order that the an LCK-manifold admits a group of conformal motions. We have also calculated the number of parameters which the group depends on. We have proved that a group of conformal motions admitted by an LCK-manifold is isomorphic to a homothetic group admitted by corresponding Kählerian metric. We also established that an isometric group of an LCK-manifold is isomorphic to some subgroup of the homothetic group of the coresponding local Kählerian metric.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
1-16
UT code for WoS article
000482856500022
EID of the result in the Scopus database
2-s2.0-85070437371