Yang-Mills bar connections over compact Kähler manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00342846" target="_blank" >RIV/67985840:_____/10:00342846 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Yang-Mills bar connections over compact Kähler manifolds
Original language description
In this note we introduce a Yang-Mills bar equation on complex vector bundles E provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on E can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections among a class of Yang-Mills bar connections over compact Käahler manifolds of positive Ricci curvature.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190701" target="_blank" >IAA100190701: Investigating manifolds with special structures from topological and geometric-analytical points of view</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum mathematicum
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
23
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—