n-dimensional observables on k-perfect MV-algebras and k-perfect effect algebras. II. One-to-one correspondence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616646" target="_blank" >RIV/61989592:15310/22:73616646 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011421003195" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011421003195</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2021.08.027" target="_blank" >10.1016/j.fss.2021.08.027</a>
Alternative languages
Result language
angličtina
Original language name
n-dimensional observables on k-perfect MV-algebras and k-perfect effect algebras. II. One-to-one correspondence
Original language description
This article is a continuation of our research on a one-to-one correspondence between n-dimensional spectral resolutions and n-dimensional observables on lexicographic types of quantum structures which started in Dvurečenskij and Lachman (https://doi.org/10.1016/j.fss.2021.05.005). There we presented the main properties of n-dimensional spectral resolutions and observables, and we studied in depth characteristic points which are crucial for our study. Here we present the main body of our research. We investigate a one-to-one correspondence between n-dimensional observables and n-dimensional spectral resolutions with values in a lexicographic form of quantum structures such as perfect MV-algebras or perfect effect algebras. The multidimensional version of this problem is more complicated than a one-dimensional one because if our algebraic structure is k-perfect for k>1, then even for the two-dimensional case of spectral resolutions we have more characteristic points. The results obtained are applied to the existence of an n-dimensional meet joint observable of n one-dimensional observables on a perfect MV-algebra and a sum of n-dimensional observables.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Volume of the periodical
442
Issue of the periodical within the volume
SI
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
26
Pages from-to
17-42
UT code for WoS article
000813335800002
EID of the result in the Scopus database
2-s2.0-85114998241