n-dimensional observables on k-perfect MV-algebras and k-perfect effect algebras. I. Characteristic points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73609901" target="_blank" >RIV/61989592:15310/22:73609901 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011421001858" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011421001858</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2021.05.005" target="_blank" >10.1016/j.fss.2021.05.005</a>
Alternative languages
Result language
angličtina
Original language name
n-dimensional observables on k-perfect MV-algebras and k-perfect effect algebras. I. Characteristic points
Original language description
In the paper, we investigate a one-to-one correspondence between $n$-dimensional observables and $n$-dimensional spectral resolutions with values in a kind of a lexicographic form of quantum structures like perfect MV-algebras or perfect effect algebras. The multidimensional version of this problem is more complicated than a one-dimensional one because if our algebraic structure is $k$-perfect for $k>1$, then even for the two-dimensional case we have more characteristic points. The obtained results are also applied to existence of an $n$-dimensional meet joint observable of $n$ one-dimensional observables on a perfect MV-algebra. The results are divided into two parts. In Part I, we present notions of $n$-dimensional observables and $n$-dimensional spectral resolutions with accent on lexicographic type effect algebras and lexicographic MV-algebras. We concentrate on characteristic points of spectral resolutions and the main body is in Part II where one-to-one relations between observables and spectral resolutions are presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Volume of the periodical
442
Issue of the periodical within the volume
SI
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
1-16
UT code for WoS article
000813335800001
EID of the result in the Scopus database
2-s2.0-85107327283