All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homogeneous Effect Algebras and Observables vs Spectral Resolutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616652" target="_blank" >RIV/61989592:15310/22:73616652 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10773-022-05185-9" target="_blank" >https://link.springer.com/article/10.1007/s10773-022-05185-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10773-022-05185-9" target="_blank" >10.1007/s10773-022-05185-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homogeneous Effect Algebras and Observables vs Spectral Resolutions

  • Original language description

    A block of an effect algebra is a maximal sub-effect algebra with some kind of compatibility property. Jenča (Australian Math. Soc. 64, 81–98, 2001), shows that every block of a homogeneous effect algebra satisfies the Riesz Decomposition Property (RDP). We establish that in a monotone σ σ-complete effect algebra, every block is a monotone σσ-complete sub-effect algebra with (RDP). This result is used to show a one-to-one relationship between observables and spectral resolutions, as well as for n-dimensional observables and n-dimensional spectral resolutions. This result extends the class of effect algebras where this relationship holds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS

  • ISSN

    0020-7748

  • e-ISSN

    1572-9575

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    31

  • Pages from-to

    "214-1"-"214-31"

  • UT code for WoS article

    000836611900001

  • EID of the result in the Scopus database

    2-s2.0-85135388118