Homogeneous Effect Algebras and Observables vs Spectral Resolutions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616652" target="_blank" >RIV/61989592:15310/22:73616652 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10773-022-05185-9" target="_blank" >https://link.springer.com/article/10.1007/s10773-022-05185-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-022-05185-9" target="_blank" >10.1007/s10773-022-05185-9</a>
Alternative languages
Result language
angličtina
Original language name
Homogeneous Effect Algebras and Observables vs Spectral Resolutions
Original language description
A block of an effect algebra is a maximal sub-effect algebra with some kind of compatibility property. Jenča (Australian Math. Soc. 64, 81–98, 2001), shows that every block of a homogeneous effect algebra satisfies the Riesz Decomposition Property (RDP). We establish that in a monotone σ σ-complete effect algebra, every block is a monotone σσ-complete sub-effect algebra with (RDP). This result is used to show a one-to-one relationship between observables and spectral resolutions, as well as for n-dimensional observables and n-dimensional spectral resolutions. This result extends the class of effect algebras where this relationship holds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
ISSN
0020-7748
e-ISSN
1572-9575
Volume of the periodical
61
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
"214-1"-"214-31"
UT code for WoS article
000836611900001
EID of the result in the Scopus database
2-s2.0-85135388118