All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparative Study of Powder Carriers Physical and Structural Properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73617319" target="_blank" >RIV/61989592:15310/22:73617319 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14160/22:00128706 RIV/61989100:27640/22:10250415

  • Result on the web

    <a href="https://www.mdpi.com/1999-4923/14/4/818" target="_blank" >https://www.mdpi.com/1999-4923/14/4/818</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pharmaceutics14040818" target="_blank" >10.3390/pharmaceutics14040818</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparative Study of Powder Carriers Physical and Structural Properties

  • Original language description

    High specific surface area (SSA), porous structure, and suitable technological characteristics (flow, compressibility) predetermine powder carriers to be used in pharmaceutical technology, especially in the formulation of liquisolid systems (LSS) and solid self-emulsifying delivery systems (s-SEDDS). Besides widely used microcrystalline cellulose, other promising materials include magnesium aluminometasilicates, mesoporous silicates, and silica aerogels. Clay minerals with laminar or fibrous internal structures also provide suitable properties for liquid drug incorporation. This work aimed at a comparison of 14 carriers&apos; main properties. Cellulose derivatives, silica, silicates, and clay minerals were evaluated for flow properties, shear cell experiments, SSA, hygroscopicity, pH, particle size, and SEM. The most promising materials were magnesium aluminometasilicates, specifically Neusilin (R) US2, due to its proper flow, large SSA, etc. Innovative materials such as FujiSil (R) or Syloid (R) XDP 3050 were for their properties evaluated as suitable. The obtained data can help choose a suitable carrier for formulations where the liquid phase is incorporated into the solid dosage form. All measurements were conducted by the same methodology and under the same conditions, allowing a seamless comparison of property evaluation between carriers, for which available company or scientific sources do not qualify due to different measurements, conditions, instrumentation, etc.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pharmaceutics

  • ISSN

    1999-4923

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    "818-1"-"818-18"

  • UT code for WoS article

    000785406900001

  • EID of the result in the Scopus database

    2-s2.0-85131597374