All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the number of aggregation functions on finite chains as a generalization of Dedekind numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73617148" target="_blank" >RIV/61989592:15310/23:73617148 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0165011422004821" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011422004821</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2022.11.012" target="_blank" >10.1016/j.fss.2022.11.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the number of aggregation functions on finite chains as a generalization of Dedekind numbers

  • Original language description

    The aim of this paper is to show that the cardinality of the set of all n-ary aggregation functions defined on finite chains can be seen as a two-fold generalization of Dedekind numbers. One generalization arises naturally from the commonly used definition of aggregation function. The second one goes in the spirit of the former Dedekind&apos;s definition, i.e., it is shown that n-ary aggregation functions equipped with certain operations form a free algebra in a finitely generated variety over the set of n generators.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FUZZY SETS AND SYSTEMS

  • ISSN

    0165-0114

  • e-ISSN

    1872-6801

  • Volume of the periodical

    466

  • Issue of the periodical within the volume

    AUG

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    "108441-1"-"108441-7"

  • UT code for WoS article

    001013284600001

  • EID of the result in the Scopus database

    2-s2.0-85143884163