Parametric topological entropy and differential equations with time-dependent impulses II: Multivalued case
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73619698" target="_blank" >RIV/61989592:15310/23:73619698 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039623003698" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039623003698</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2023.05.030" target="_blank" >10.1016/j.jde.2023.05.030</a>
Alternative languages
Result language
angličtina
Original language name
Parametric topological entropy and differential equations with time-dependent impulses II: Multivalued case
Original language description
The main aim of this article is to establish an effective criterion for a positive parametric topological entropy to differential equations with multivalued nonautonomous impulses on tori. The crucial tool for this goal consists in developing an appropriate Ivanov-like inequality for the lower estimate of a new kind of entropy by means of the logarithm of asymptotic Nielsen numbers for the compositions of a one-parameter family of multivalued admissible maps. This inequality is then applied to impulsive differential equations on tori via the associated Poincaré translation operators along their trajectories. The obtained results generalize in a significant way those in our recent papers, especially in the one with the same title (whence the indication by II), into a multivalued setting. Another nontrivial generalization can be regarded with respect to their simple reduction into a “nonparametric” case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
367
Issue of the periodical within the volume
SEP
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
783-803
UT code for WoS article
001012285400001
EID of the result in the Scopus database
2-s2.0-85161027240