All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tolerances on posets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73620558" target="_blank" >RIV/61989592:15310/23:73620558 - isvavai.cz</a>

  • Result on the web

    <a href="http://mat76.mat.uni-miskolc.hu/mnotes/article/4033" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/article/4033</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18514/MMN.2023.4033" target="_blank" >10.18514/MMN.2023.4033</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tolerances on posets

  • Original language description

    Gábor Czédli proved that for every tolerance T on a lattice L can be constructed a quotient lattice L/T by this tolerance which is not possible for semilattices or other algebras. We introduced the concept of a tolerance on a poset and show that a similar construction is still possible. It is shown that the blocks of such tolerance are convex and that thisn tolerance is a congruence provided P is relatively complemented.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Miskolc Mathematical Notes

  • ISSN

    1787-2405

  • e-ISSN

    1787-2413

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    12

  • Pages from-to

    725-736

  • UT code for WoS article

    001043687500016

  • EID of the result in the Scopus database

    2-s2.0-85167884165