Tolerances on posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73620558" target="_blank" >RIV/61989592:15310/23:73620558 - isvavai.cz</a>
Result on the web
<a href="http://mat76.mat.uni-miskolc.hu/mnotes/article/4033" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/article/4033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2023.4033" target="_blank" >10.18514/MMN.2023.4033</a>
Alternative languages
Result language
angličtina
Original language name
Tolerances on posets
Original language description
Gábor Czédli proved that for every tolerance T on a lattice L can be constructed a quotient lattice L/T by this tolerance which is not possible for semilattices or other algebras. We introduced the concept of a tolerance on a poset and show that a similar construction is still possible. It is shown that the blocks of such tolerance are convex and that thisn tolerance is a congruence provided P is relatively complemented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
1787-2413
Volume of the periodical
24
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
12
Pages from-to
725-736
UT code for WoS article
001043687500016
EID of the result in the Scopus database
2-s2.0-85167884165