Analysis of Berger nonlinear elastic static plate bending of rectangular plates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73621385" target="_blank" >RIV/61989592:15310/23:73621385 - isvavai.cz</a>
Result on the web
<a href="https://journals.sagepub.com/doi/epub/10.1177/10812865231160245" target="_blank" >https://journals.sagepub.com/doi/epub/10.1177/10812865231160245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/10812865231160245" target="_blank" >10.1177/10812865231160245</a>
Alternative languages
Result language
angličtina
Original language name
Analysis of Berger nonlinear elastic static plate bending of rectangular plates
Original language description
This paper deals with a nonlinear static plate model based on Berger theory, which is a specific case of a generalization of the Woinowsky-Krieger mathematical model of beam bending. It is considered a plate bending with forces acting in the middle plane of the plate and a contact problem with an elastic foundation, where the normal compliance condition is employed. A variational equation of the problem and a functional of the total potential energy corresponding to the variational equation are derived. Under additional assumptions on the data (e.g., clamped plate), the existence and uniqueness of the solution are proved. A numerical solution is based on the Galerkin method and Courant approximation. The theory is illustrated by a numerical example.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICS AND MECHANICS OF SOLIDS
ISSN
1081-2865
e-ISSN
1741-3028
Volume of the periodical
28
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
33
Pages from-to
2458-2490
UT code for WoS article
000985972800001
EID of the result in the Scopus database
2-s2.0-85159110849