On the Home-Space Problem for Petri Nets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627479" target="_blank" >RIV/61989592:15310/24:73627479 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333207366" target="_blank" >https://obd.upol.cz/id_publ/333207366</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-56222-8_10" target="_blank" >10.1007/978-3-031-56222-8_10</a>
Alternative languages
Result language
angličtina
Original language name
On the Home-Space Problem for Petri Nets
Original language description
In a recent paper (at Concur 2023) we answered a former question by D. de Frutos Escrig and C. Johnen, by showing the decidability of the “semilinear home-space problem” for Petri nets (that asks if a given semilinear set H is a home-space for a given semilinear set X of markings of a Petri net). We used an approach constructing semilinear “non-reachability cores” for linear sets. This was sufficient for a decision algorithm, a detailed analysis of which even showed that the problem is Ackermann-complete, but it has remained unclear if such semilinear cores can be constructed for general semilinear sets. Here we give a positive answer to this question; this also yields a conceptually simpler decision algorithm for the mentioned home-space problem, though with no complexity bound.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
TAMING THE INFINITIES OF CONCURRENCY
ISBN
978-3-031-56221-1
Number of pages of the result
9
Pages from-to
172-180
Number of pages of the book
309
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
001215137000009