Algebras presented by normal identities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F99%3A00000955" target="_blank" >RIV/61989592:15310/99:00000955 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Algebras presented by normal identities
Original language description
We describe a structure of algebras presented by normal identities and for algebras which have not this property we find a maximal subalgebra of a normally presented satisfying the same identities. We introduce the notion of normal congruence and describe the lattice of normal congruences of an algebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
1999
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica
ISSN
0231-9721
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
NA
Country of publishing house
XX - stateless person
Number of pages
10
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—