On improved volatility modelling by fitting skewness in ARCH models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43916392" target="_blank" >RIV/62156489:43110/20:43916392 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1080/02664763.2019.1671323" target="_blank" >https://doi.org/10.1080/02664763.2019.1671323</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02664763.2019.1671323" target="_blank" >10.1080/02664763.2019.1671323</a>
Alternative languages
Result language
angličtina
Original language name
On improved volatility modelling by fitting skewness in ARCH models
Original language description
We study ARCH/GARCH effects under possible deviation from normality. Since skewness is the principal cause for deviations from normality in many practical applications, e.g. finance, we study in particular skewness. We propose robust tests for normality both for NoVaS and modified NoVaS transformed and original data. Such an approach is not applicable for EGARCH, but applicable for GARCH-GJR models. A novel test procedure is proposed for the skewness in autoregressive conditional volatility models. The power of the tests is investigated with various underlying models. Applications with financial data show the applicability and the capabilities of the proposed testing procedure.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50202 - Applied Economics, Econometrics
Result continuities
Project
<a href="/en/project/GA16-07089S" target="_blank" >GA16-07089S: Robust approach to testing for normality of error terms in econometric models</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Statistics
ISSN
0266-4763
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
33
Pages from-to
1031-1063
UT code for WoS article
000488186400001
EID of the result in the Scopus database
2-s2.0-85073951742