All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Variability in the Water Footprint of Arable Crop Production across European Regions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F17%3A43911222" target="_blank" >RIV/62156489:43210/17:43911222 - isvavai.cz</a>

  • Alternative codes found

    RIV/86652079:_____/17:00485337

  • Result on the web

    <a href="http://dx.doi.org/10.3390/w9020093" target="_blank" >http://dx.doi.org/10.3390/w9020093</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/w9020093" target="_blank" >10.3390/w9020093</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Variability in the Water Footprint of Arable Crop Production across European Regions

  • Original language description

    Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO&apos;s water balance model &quot; Aquacrop&quot; at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992-2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64-0.80; d = 0.91-0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (cv = 45%) and to a lesser extent to variability in crop water use (cv = 21%). The WF variability between countries (cv = 14%) is lower than the variability between seasons (cv = 22%) and between crops (cv = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Water

  • ISSN

    2073-4441

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    22

  • Pages from-to

  • UT code for WoS article

    000395435800023

  • EID of the result in the Scopus database

    2-s2.0-85013846374