All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gold nanoparticles modified screen printed carbon electrode as a tool for detection of TP53

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F20%3A43917973" target="_blank" >RIV/62156489:43210/20:43917973 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26620/20:PU136649

  • Result on the web

    <a href="https://doi.org/10.37904/nanocon.2019.8611" target="_blank" >https://doi.org/10.37904/nanocon.2019.8611</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37904/nanocon.2019.8611" target="_blank" >10.37904/nanocon.2019.8611</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gold nanoparticles modified screen printed carbon electrode as a tool for detection of TP53

  • Original language description

    Cancer is one of the most common causes of death in developing countries and in the developed world. The function of the p53 protein plays an important role in the development of cancer. The protein p53 regulates the expression of genes that are responsible for the control of cell growth, apoptosis or for repair of damaged DNA. It t is encoded by the tumor suppressor gene TP53. If this gene mutates, its product will be damaged. It was found that mutations in the TP53 gene is present in more than 50% of cancer cases. Electrochemical biosensors have proved to be a suitable method for the detection of TP53 and also its mutations. Electrochemical deposition of gold nanoparticles on the surface of working electrode increases the active surface area of the sensor, this leads to a more sensitive detection of the TP53 gene and its mutations. By developing an electrochemical biosensor based on gold nanoparticles modified screen printed electrodes, an efficient platform for detecting the TP53 gene in biological samples is obtained.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2019: Conference Proceedings

  • ISBN

    978-80-87294-95-6

  • ISSN

    2694-930X

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    402-405

  • Publisher name

    Tanger Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 16, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000664115400067