All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The comparison of pixel-based image analysis for detection of weeds in winter wheat from UAV imagery

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F24%3A43926038" target="_blank" >RIV/62156489:43210/24:43926038 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.15439/2024F4147" target="_blank" >http://dx.doi.org/10.15439/2024F4147</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15439/2024F4147" target="_blank" >10.15439/2024F4147</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The comparison of pixel-based image analysis for detection of weeds in winter wheat from UAV imagery

  • Original language description

    Creating weed maps directly by growers is becoming increasingly common. In this study, an unmanned aerial vehicle (UAV) imaged a field infested by field thistle (Cirsium arvense). This paper compares four detection methods that can be used concerning agricultural practice. Two algorithms are supervised classification methods - Maximum Likelihood (ML) and Supported Vector Machine (SVM). The Pix4Dfields (Magic Tool) classification algorithm and the thresholding method are other methods used. The Kappa coefficient and the overall accuracy determined the accuracy of the individual algorithms. The highest accuracy was achieved by the thresholding method, and the lowest by the Pix4Dfields algorithm. Among the supervised classification methods, SVM achieved higher accuracy than the ML algorithm. In terms of using the methods in practice, the thresholding method proved more effective than supervised classification methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    40101 - Agriculture

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS)

  • ISBN

    978-83-969601-8-4

  • ISSN

    2300-5963

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    683-687

  • Publisher name

    Polskie Towarzystwo Informatyczne

  • Place of publication

    Varšava

  • Event location

    Bělehrad

  • Event date

    Sep 8, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001413201600083