All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Monitoring of forest hauling roads wearing course damage using unmanned aerial systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F16%3A43909867" target="_blank" >RIV/62156489:43410/16:43909867 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.11118/actaun201664051537" target="_blank" >https://doi.org/10.11118/actaun201664051537</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.11118/actaun201664051537" target="_blank" >10.11118/actaun201664051537</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Monitoring of forest hauling roads wearing course damage using unmanned aerial systems

  • Original language description

    Currently, a large part of the forest roads that were built using the bituminous surface technology in the second half of the last century have been worn out. This means that forest owners and forest managers urgently need to determine the amount and extent of this damage and establish a suitable repair plan, which demands both time and staff. The aim of the study is to verify whether it is possible, and with what precision, to detect the damage of the wearing course by means of unmanned aerial systems, which would facilitate and accelerate this process and possibly make it cheaper. A 3D model of a forest road was created using photos of the current state of a damaged part of a forest road. The aerial photographs were taken by an unmanned aircraft. To verify the accuracy of the model, cross sections of the road surface were surveyed tachymetrically and compared with the cross sections created in the 3D model in ArcMap, from photogrammetric pointcloud using aerial photographs from the unmanned aircraft. The RMSE of the values of the control points in the 3D model cross sections compared to the values of the points in the tachymetric measurement of the cross sections reached to within 0.0198 m. The results of the tested road section showed that the unmanned aerial systems can be used to detect the forest road surface damage with the difference in accuracy being up to 2 cm compared with the accuracy of the current tachymetric methods. Based on the results we can conclude that the used method is appropriate for detailed monitoring of the condition of the asphalt wearing course of forest roads and allows for a precise and objective localization and quantification of damage.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    GK - Forestry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis

  • ISSN

    1211-8516

  • e-ISSN

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    10

  • Pages from-to

    1537-1546

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84994495818