All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62243136%3A_____%2F21%3AN0000007" target="_blank" >RIV/62243136:_____/21:N0000007 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24210/21:00009161 RIV/62243136:_____/21:N0000024

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/13/21/3754" target="_blank" >https://www.mdpi.com/2073-4360/13/21/3754</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym13213754" target="_blank" >10.3390/polym13213754</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites

  • Original language description

    A metakaolinite-based geopolymer binder was prepared by using calcined claystone as the main raw material and potassium as the alkaline activator. Chamotte was added (65 vol%) to form geopolymer composites. Potassium hydroxide (KOH) was used to adjust the molar ratio of K/Al and the effect of K/Al on thermo-mechanical properties of geopolymer composites was investigated. This study aimed to analyze the effect of K/Al ratio and exposure to high temperatures (up to 1200 °C) on the compressive and flexural strengths, phase composition, pore size distribution, and thermal dilatation. With an increasing K/Al ratio, the crystallization temperature of the new phases (leucite and kalsilite) decreased. Increasing content of K/Al led to a decline in the onset temperature of the major shrinkage. The average pore size slightly increased with increasing K/Al ratio at laboratory temperature. Mechanical properties of geopolymer composites showed degradation with the increase of the K/Al ratio. The exception was the local maximum at a K/Al ratio equal to one. The results showed that the compressive strength decreases with increasing temperature. For thermal applications above 600 °C, it is better to use samples with lower K/Al ratios (0.55 or 0.70).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20400 - Chemical engineering

Result continuities

  • Project

    <a href="/en/project/LM2018119" target="_blank" >LM2018119: Catalytic processes for efficient utilization of carbonaceous energy raw materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85118508377