On the eigenspace structure of a matrix in max-min algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F05%3A00002458" target="_blank" >RIV/62690094:18450/05:00002458 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the eigenspace structure of a matrix in max-min algebra
Original language description
For a given sqare matrix in a max-min algebra, the structure of the eigenspace is studied. A necessary and sufficient condition is described, under which the maximum eigenvector is constant. Further, results show that the eigenspace can contain exponentially many nonempty disjoint intervals of strictly monotone eigenvectors, with distinct endpoints. As a consequence, the eigenspace structure cannot be completely described in polynomial time.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 8th International Symposium Operation Research 2005
ISBN
961-6165-20-8
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
Univerzita of Ljubljana
Place of publication
Ljubljana
Event location
Nova Gorica, Slovenia
Event date
Sep 28, 2005
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000233426700019