Tropical linear algebra with the Lukasiewicz T-norm
Result description
The max- Lukasiewicz semiring is defi ned as the unit interval [0; 1] equipped with the arithmetics "a+b" = max(a; b) and "ab" = max(0; a+b-1). Linear algebra over this semiring can be developed in the usual way. We describe a conversion of the problemsof the max- Lukasiewicz linear algebra into the problems of tropical (max-plus) linear algebra. Based on this conversion, we develop a theory of the matrix powers and the eigenproblem over the max- Lukasiewicz semiring.
Keywords
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Tropical linear algebra with the Lukasiewicz T-norm
Original language description
The max- Lukasiewicz semiring is defi ned as the unit interval [0; 1] equipped with the arithmetics "a+b" = max(a; b) and "ab" = max(0; a+b-1). Linear algebra over this semiring can be developed in the usual way. We describe a conversion of the problemsof the max- Lukasiewicz linear algebra into the problems of tropical (max-plus) linear algebra. Based on this conversion, we develop a theory of the matrix powers and the eigenproblem over the max- Lukasiewicz semiring.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
GA14-02424S: Methods of operations research for decision support under uncertainty
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy sets and systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
276
Issue of the periodical within the volume
říjen
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
131-148
UT code for WoS article
000356142500008
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BA - General mathematics
Year of implementation
2015