Tropical linear algebra with the Lukasiewicz T-norm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F15%3A50001803" target="_blank" >RIV/62690094:18450/15:50001803 - isvavai.cz</a>
Result on the web
<a href="http://ac.els-cdn.com/S0165011414005119/1-s2.0-S0165011414005119-main.pdf?_tid=bb154616-944d-11e5-86cd-00000aab0f02&acdnat=1448549907_d2008384a18f56e0f361ed7bf3d88107" target="_blank" >http://ac.els-cdn.com/S0165011414005119/1-s2.0-S0165011414005119-main.pdf?_tid=bb154616-944d-11e5-86cd-00000aab0f02&acdnat=1448549907_d2008384a18f56e0f361ed7bf3d88107</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2014.11.008" target="_blank" >10.1016/j.fss.2014.11.008</a>
Alternative languages
Result language
angličtina
Original language name
Tropical linear algebra with the Lukasiewicz T-norm
Original language description
The max- Lukasiewicz semiring is defi ned as the unit interval [0; 1] equipped with the arithmetics "a+b" = max(a; b) and "ab" = max(0; a+b-1). Linear algebra over this semiring can be developed in the usual way. We describe a conversion of the problemsof the max- Lukasiewicz linear algebra into the problems of tropical (max-plus) linear algebra. Based on this conversion, we develop a theory of the matrix powers and the eigenproblem over the max- Lukasiewicz semiring.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02424S" target="_blank" >GA14-02424S: Methods of operations research for decision support under uncertainty</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy sets and systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
276
Issue of the periodical within the volume
říjen
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
131-148
UT code for WoS article
000356142500008
EID of the result in the Scopus database
—