Comparison of consistent approximations for a matrix of pair preferences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F15%3A50003845" target="_blank" >RIV/62690094:18450/15:50003845 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Comparison of consistent approximations for a matrix of pair preferences
Original language description
The optimal consistent approximation is defined as a consistent matrix with the minimal distance from the given preference matrix. Three distance functions are used in this paper as a basis of the approximation: the Chebyshev, the Manhattan and the Euclidean distance. The optimization results computed by these three methods are compared and are illustrated on numerical examples.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02424S" target="_blank" >GA14-02424S: Methods of operations research for decision support under uncertainty</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Czech-Japan seminar on data analysis and decision making under uncertainty
ISBN
978-80-7435-579-0
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
45-57
Publisher name
Gaudeamus
Place of publication
Hradec Králové
Event location
Broumov
Event date
Sep 19, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—