All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fuzzy Granular Classifier Approach for Spam Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F15%3A50004184" target="_blank" >RIV/62690094:18450/15:50004184 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-24306-1_25" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-24306-1_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-24306-1_25" target="_blank" >10.1007/978-3-319-24306-1_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fuzzy Granular Classifier Approach for Spam Detection

  • Original language description

    Spam email problem is a major shortcoming of email technology for computer security. In this research, a granular classifier model is proposed to discover hyperboxes in the geometry of information granules for spam detection in three steps. In the firststep, the k-means clustering algorithm is applied to find the seed_points to build the granular structure of the spam and non-spam patterns. Moreover, applying the interval analysis through the high homogeneity of the patterns captures the key part of the spam and non-spam classifiers' structure. In the second step, PSO algorithm is hybridized with the k-means to optimize the formalized information granules' performance. The proposed model is evaluated based on the accuracy, misclassification and coverage criteria. Experimental results reveal that the performance of our proposed model is increased through applying Particle Swarm Optimization and fuzzy set.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational collective intelligence. Part II.

  • ISBN

    978-3-319-24306-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    256-264

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Madrid

  • Event date

    Sep 21, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000366123600025