Eigenspace structure of a max-prod fuzzy matrix
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F16%3A50003809" target="_blank" >RIV/62690094:18450/16:50003809 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2015.09.023" target="_blank" >http://dx.doi.org/10.1016/j.fss.2015.09.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2015.09.023" target="_blank" >10.1016/j.fss.2015.09.023</a>
Alternative languages
Result language
angličtina
Original language name
Eigenspace structure of a max-prod fuzzy matrix
Original language description
The eigenvectors of a fuzzy matrix correspond to steady states of a complex discrete-events system, characterized by the given transition matrix and fuzzy state vectors. The descriptions of the eigenspace (of the the set of all eigenvectors) for fuzzy matrices in the max-prod algebra is investigated in this paper. The details for matrices of order 3 are only presented. The method works analogously for square matrices of higher orders, with rapidly increasing complexity of the formulas.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02424S" target="_blank" >GA14-02424S: Methods of operations research for decision support under uncertainty</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy sets and systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
303
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
"136-148"
UT code for WoS article
000384862600009
EID of the result in the Scopus database
—