Size determination of microbubbles in optical microscopy: a best-case scenario
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013893" target="_blank" >RIV/62690094:18450/17:50013893 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1364/OE.25.033588" target="_blank" >http://dx.doi.org/10.1364/OE.25.033588</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1364/OE.25.033588" target="_blank" >10.1364/OE.25.033588</a>
Alternative languages
Result language
angličtina
Original language name
Size determination of microbubbles in optical microscopy: a best-case scenario
Original language description
Microbubble-based ultrasound contrast agents are used in clinical settings to enhance backscattered ultrasound signals from blood during perfusion and blood flow measurements. The dynamics of microbubbles contained in ultrasound contrast agents are typically studied with a high-speed camera attached to a microscope. Such microbubbles, with resting diameters between 1 µm and 7 µm, are considered in optical focus if the bubble centers are in the focal plane of the objective lens. Nonetheless, when a three-dimensional object, a stack of infinitely thin two-dimensional layers, is imaged through a microscope, the image formed onto the charge coupled device element consists of contributions from all layers. If a bubble is larger than the depth of focus, the part of the bubble above the focal plane influences the image formation and therefore the bubble size measured. If a bubble is of a size in the order of the wavelengths of the light used, the system resolution and the segmentation method influence the bubble size measured. In this study, the projections of three dimensional microbubbles (hollow spheres) were computed with an ideal, weighted three-dimensional point spread function to find out under which circumstances the optical image formation leads to a significant deviation in measurement of the actual size. The artificial images were subjected to segmentation techniques for objectively comparing original microbubble sizes with measured microbubble sizes. Results showed that a systematic error was observed for objects in focus with radius ≤ 1.65µm. Also it was concluded that even though a three-dimensional object is in focus, there is discrepancy of up to 0.66% in size measurement. In addition, size measurement of an object for the same shift above and below focus could differ by up to 3.6%. Moreover, defocusing above 25% severely deviates size measurements while defocusing up to 90% could result in mean percentage error of up to 67.96.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optics express
ISSN
1094-4087
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
26
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
33588-33601
UT code for WoS article
000418893200125
EID of the result in the Scopus database
2-s2.0-85039045271