EA/AE-Eigenvectors of Interval Max-Min Matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016976" target="_blank" >RIV/62690094:18450/20:50016976 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/6/882" target="_blank" >https://www.mdpi.com/2227-7390/8/6/882</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8060882" target="_blank" >10.3390/math8060882</a>
Alternative languages
Result language
angličtina
Original language name
EA/AE-Eigenvectors of Interval Max-Min Matrices
Original language description
In reality, the matrix (vector) entries are usually not exact numbers and they can instead be considered as values in some intervals. The aim of this paper is to investigate the eigenvectors for max--min matrices (vectors) with interval coefficients. This topic is closely related to the research of fuzzy discrete events sustems (DES) in which the entries of state vectors and transition matrices are kept between 0 and 1, in order to describe uncertain and vague values. Such approach has many various applications, especially for decision-making support in biomedical research. On the other side, the interval data obtained as a result of impreciseness, or data errors, play important role in practise, and allow to model similar concepts. The interval approach in this paper is applied in combination with forall–exists quantification of the considered values.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-01246S" target="_blank" >GA18-01246S: Non-standard optimization and decision-making methods in management processes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
"Article Number: 882"
UT code for WoS article
000553935100001
EID of the result in the Scopus database
2-s2.0-85087458973