Strong tolerance of interval eigenvectors in fuzzy algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50014893" target="_blank" >RIV/62690094:18450/19:50014893 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011418309394" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011418309394</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2018.11.015" target="_blank" >10.1016/j.fss.2018.11.015</a>
Alternative languages
Result language
angličtina
Original language name
Strong tolerance of interval eigenvectors in fuzzy algebra
Original language description
The values of vector or matrix inputs in practice are usually not exact numbers and some intervals can instead be considered as values. This paper investigates the properties of matrices and vectors with interval coefficients. In addition, a complete solution of the strong tolerance interval eigenproblem in max–min algebra is presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-01246S" target="_blank" >GA18-01246S: Non-standard optimization and decision-making methods in management processes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy sets and systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
369
Issue of the periodical within the volume
August
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
145-156
UT code for WoS article
000468735500010
EID of the result in the Scopus database
2-s2.0-85058206926