LINPE-BL: A Local Descriptor and Broad Learning for Identification of Abnormal Breast Thermograms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018255" target="_blank" >RIV/62690094:18450/21:50018255 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9502134" target="_blank" >https://ieeexplore.ieee.org/document/9502134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TMI.2021.3101453" target="_blank" >10.1109/TMI.2021.3101453</a>
Alternative languages
Result language
angličtina
Original language name
LINPE-BL: A Local Descriptor and Broad Learning for Identification of Abnormal Breast Thermograms
Original language description
This paper proposes a novel local feature descriptor coined as a local instant-and-center-symmetric neighbor-based pattern of the extrema-images (LINPE) to detect breast abnormalities in thermal breast images. It is a hybrid descriptor that combines two different feature descriptors: one is the inverse-probability difference extrema (IpDE), and another is the local instant and center-symmetric neighbor-based pattern (LICsNP). IpDE is developed to compute the intensity-inhomogeneity-invariant feature-based image of the breast thermogram. Besides, the LICsNP is intended to capture the local microstructure pattern information in the IpDE image. A new paradigm, named Broad Learning (BL) network, is introduced here as a classifier to differentiate the healthy and sick breast thermograms efficiently. The efficacy of the proposed system is quantitatively validated on the images of DMR-IR and DBT-TU-JU databases. Extensive experimentation on these databases with an average accuracy of 96.90% and 94%, respectively, justifies proposed system’s superiority in the differentiation of healthy and sick breast thermograms over the other related existing state-of-the-art methods. The proposed system also performs consistently in the presence of noise and rotational changes. IEEE
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Medical Imaging
ISSN
0278-0062
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
3919-3931
UT code for WoS article
000724511900057
EID of the result in the Scopus database
2-s2.0-85112647570