All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

LINPE-BL: A Local Descriptor and Broad Learning for Identification of Abnormal Breast Thermograms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018255" target="_blank" >RIV/62690094:18450/21:50018255 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9502134" target="_blank" >https://ieeexplore.ieee.org/document/9502134</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TMI.2021.3101453" target="_blank" >10.1109/TMI.2021.3101453</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    LINPE-BL: A Local Descriptor and Broad Learning for Identification of Abnormal Breast Thermograms

  • Original language description

    This paper proposes a novel local feature descriptor coined as a local instant-and-center-symmetric neighbor-based pattern of the extrema-images (LINPE) to detect breast abnormalities in thermal breast images. It is a hybrid descriptor that combines two different feature descriptors: one is the inverse-probability difference extrema (IpDE), and another is the local instant and center-symmetric neighbor-based pattern (LICsNP). IpDE is developed to compute the intensity-inhomogeneity-invariant feature-based image of the breast thermogram. Besides, the LICsNP is intended to capture the local microstructure pattern information in the IpDE image. A new paradigm, named Broad Learning (BL) network, is introduced here as a classifier to differentiate the healthy and sick breast thermograms efficiently. The efficacy of the proposed system is quantitatively validated on the images of DMR-IR and DBT-TU-JU databases. Extensive experimentation on these databases with an average accuracy of 96.90% and 94%, respectively, justifies proposed system’s superiority in the differentiation of healthy and sick breast thermograms over the other related existing state-of-the-art methods. The proposed system also performs consistently in the presence of noise and rotational changes. IEEE

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Medical Imaging

  • ISSN

    0278-0062

  • e-ISSN

  • Volume of the periodical

    40

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    3919-3931

  • UT code for WoS article

    000724511900057

  • EID of the result in the Scopus database

    2-s2.0-85112647570