Local Features and Visual Words Emerge in Activations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337163" target="_blank" >RIV/68407700:21230/19:00337163 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/8954470/keywords#keywords" target="_blank" >https://ieeexplore.ieee.org/document/8954470/keywords#keywords</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2019.01192" target="_blank" >10.1109/CVPR.2019.01192</a>
Alternative languages
Result language
angličtina
Original language name
Local Features and Visual Words Emerge in Activations
Original language description
We propose a novel method of deep spatial matching (DSM) for image retrieval. Initial ranking is based on image descriptors extracted from convolutional neural network activations by global pooling, as in recent state-of-the-art work. However, the same sparse 3D activation tensor is also approximated by a collection of local features. These local features are then robustly matched to approximate the optimal alignment of the tensors. This happens without any network modification, additional layers or training. No local feature detection happens on the original image. No local feature descriptors and no visual vocabulary are needed throughout the whole process. We experimentally show that the proposed method achieves the state-of-the-art performance on standard benchmarks across different network architectures and different global pooling methods. The highest gain in performance is achieved when diffusion on the nearest-neighbor graph of global descriptors is initiated from spatially verified images.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2019: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-7281-3293-8
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
10
Pages from-to
11643-11652
Publisher name
IEEE
Place of publication
—
Event location
Long Beach
Event date
Jun 15, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—