All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning and aggregating deep local descriptors for instance-level recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00345514" target="_blank" >RIV/68407700:21230/20:00345514 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-58452-8_27" target="_blank" >https://doi.org/10.1007/978-3-030-58452-8_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-58452-8_27" target="_blank" >10.1007/978-3-030-58452-8_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning and aggregating deep local descriptors for instance-level recognition

  • Original language description

    We propose an efficient method to learn deep local descriptors for instance-level recognition. The training only requires examples of positive and negative image pairs and is performed as metric learning of sum-pooled global image descriptors. At inference, the local descriptors are provided by the activations of internal components of the network. We demonstrate why such an approach learns local descriptors that work well for image similarity estimation with classical efficient match kernel methods. The experimental validation studies the trade-off between performance and memory requirements of the state-of-the-art image search approach based on match kernels. Compared to existing local descriptors, the proposed ones perform better in two instance-level recognition tasks and keep memory requirements lower. We experimentally show that global descriptors are not effective enough at large scale and that local descriptors are essential. We achieve state-of-the-art performance, in some cases even with a backbone network as small as ResNet18.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1901" target="_blank" >LL1901: Generalized Image Retrieval and Relation Discovery</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision - ECCV 2020, Part I

  • ISBN

    978-3-030-58451-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    18

  • Pages from-to

    460-477

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Glasgow

  • Event date

    Aug 23, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article