Foundations of higher-order variational theory on Grassmann fibrations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F14%3A50002496" target="_blank" >RIV/62690094:18470/14:50002496 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0219887814600238" target="_blank" >http://dx.doi.org/10.1142/S0219887814600238</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219887814600238" target="_blank" >10.1142/S0219887814600238</a>
Alternative languages
Result language
angličtina
Original language name
Foundations of higher-order variational theory on Grassmann fibrations
Original language description
A setting for higher-order global variational analysis on Grassmann fibrations is presented. The integral variational principles for one-dimensional immersed submanifolds are introduced by means of differential 1-forms with specific properties, similar to the Lepage forms from the variational calculus on fibred manifolds. Prolongations of immersions and vector fields to the Grassmann fibrations are defined as a geometric tool for the variations of immersions, and the first variation formula in the infinitesimal form is derived. Its consequences, the Euler-Lagrange equations for submanifolds and the Noether theorem on invariant variational functionals are proved. Examples clarifying the meaning of the Noether theorem in the context of variational principles for submanifolds are given. (pp.1460023-1 - 1460023-27)
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International journal of geometric methods in modern physics
ISSN
0219-8878
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
1-27
UT code for WoS article
000341012300010
EID of the result in the Scopus database
—