All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The fundamental Lepage form in variational theory for submanifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F18%3A10240046" target="_blank" >RIV/61989100:27120/18:10240046 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.worldscientific.com/doi/abs/10.1142/S0219887818501037?src=recsys" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0219887818501037?src=recsys</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219887818501037" target="_blank" >10.1142/S0219887818501037</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The fundamental Lepage form in variational theory for submanifolds

  • Original language description

    The multiple-integral variational functionals for finite-dimensional immersed submanifolds are studied by means of the fundamental Lepage equivalent of a homogeneous Lagrangian, which can be regarded as a generalization of the well-known Hilbert form in the classical mechanics. The notion of a Lepage form is extended to manifolds of regular velocities and plays a basic role in formulation of the variational theory for submanifolds. The theory is illustrated on the minimal submanifolds problem, including analysis of conservation law equations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Geometric Methods in Modern Physics

  • ISSN

    0219-8878

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    30

  • Pages from-to

  • UT code for WoS article

    000432458300016

  • EID of the result in the Scopus database

    2-s2.0-85042776082