The fundamental Lepage form in variational theory for submanifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F18%3A10240046" target="_blank" >RIV/61989100:27120/18:10240046 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S0219887818501037?src=recsys" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0219887818501037?src=recsys</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219887818501037" target="_blank" >10.1142/S0219887818501037</a>
Alternative languages
Result language
angličtina
Original language name
The fundamental Lepage form in variational theory for submanifolds
Original language description
The multiple-integral variational functionals for finite-dimensional immersed submanifolds are studied by means of the fundamental Lepage equivalent of a homogeneous Lagrangian, which can be regarded as a generalization of the well-known Hilbert form in the classical mechanics. The notion of a Lepage form is extended to manifolds of regular velocities and plays a basic role in formulation of the variational theory for submanifolds. The theory is illustrated on the minimal submanifolds problem, including analysis of conservation law equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Geometric Methods in Modern Physics
ISSN
0219-8878
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
6
Country of publishing house
SG - SINGAPORE
Number of pages
30
Pages from-to
—
UT code for WoS article
000432458300016
EID of the result in the Scopus database
2-s2.0-85042776082