THE ORDER OF APPEARANCE OF THE PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F14%3A50002885" target="_blank" >RIV/62690094:18470/14:50002885 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.2478/tmmp-2014-0000" target="_blank" >http://dx.doi.org/10.2478/tmmp-2014-0000</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/tmmp-2014-0000" target="_blank" >10.2478/tmmp-2014-0000</a>
Alternative languages
Result language
angličtina
Original language name
THE ORDER OF APPEARANCE OF THE PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS
Original language description
Let $ F_n$ be the $n$th Fibonacci number and let $L_n$ be the $n$th Lucas number. The order of appearance $z(n)$ of a natural number $n$ is defined as the smallest natural number $k$ such that $n$ divides $F_k$. For instance, $z(F_n)=n=z(L_n)/2$, for all$n>2$. In this paper, among other things, we prove that begin{center} $z(L_{n}L_{n+1}L_{n+2}L_{n+3}L_{n+4})=dfrac{n(n+1)(n+2)(n+3)(n+4)}{12}$, end{center} for all positive integers $nequiv 0,8pmod{12}$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Tatra Mountains Matematical Pulblications
ISSN
1210-3195
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
1
Country of publishing house
SK - SLOVAKIA
Number of pages
13
Pages from-to
1-13
UT code for WoS article
—
EID of the result in the Scopus database
—