Singer-Thorpe bases for special Einstein curvature tensors in dimension 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F15%3A50004214" target="_blank" >RIV/62690094:18470/15:50004214 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs10587-015-0230-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs10587-015-0230-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-015-0230-1" target="_blank" >10.1007/s10587-015-0230-1</a>
Alternative languages
Result language
angličtina
Original language name
Singer-Thorpe bases for special Einstein curvature tensors in dimension 4
Original language description
Let (M, g) be a 4-dimensional Einstein Riemannian manifold. At each point p of M , the tangent space admits a so-called Singer-Thorpe basis (ST basis) with respect to the curvature tensor R at p. In this basis, up to standard symmetries and antisymmetries, just 5 components of the curvature tensor R are nonzero. For the space of constant curvature, the group O(4) acts as a transformation group between ST bases at T p M and for the so-called 2-stein curvature tensors, the group Sp(1) acts as a transformation group between ST bases. In the present work, the complete list of Lie subgroups of SO(4) which act as transformation groups between ST bases for certain classes of Einstein curvature tensors is presented. Special representations of groups SO(2), T 2, Sp(1) or U(2) are obtained and the classes of curvature tensors whose transformation group into new ST bases is one of the mentioned groups are determined.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak mathematical journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
1101-1115
UT code for WoS article
000367853700018
EID of the result in the Scopus database
—