On the Resolvent of Multidimensional Operators with Frequently Alternating Boundary Conditions with the Robin Homogenized Condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50004659" target="_blank" >RIV/62690094:18470/16:50004659 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10958-016-2720-6" target="_blank" >http://dx.doi.org/10.1007/s10958-016-2720-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-016-2720-6" target="_blank" >10.1007/s10958-016-2720-6</a>
Alternative languages
Result language
angličtina
Original language name
On the Resolvent of Multidimensional Operators with Frequently Alternating Boundary Conditions with the Robin Homogenized Condition
Original language description
We consider an elliptic operator in a multidimensional domain with frequent alternation of the Dirichlet condition and the Robin boundary condition in the case where the homogenized operator contains only the original Robin boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain order sharp estimates for the rate of convergence. We construct a complete asymptotic expansion for the resolvent in the case where the resolvent acts on sufficiently smooth functions and the alternation of boundary conditions is strictly periodic and is given on a multidimensional hyperplane.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of mathematical sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
213
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
43
Pages from-to
461-503
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84962297128