All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017891" target="_blank" >RIV/62690094:18470/21:50017891 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00526-020-01847-w" target="_blank" >https://link.springer.com/article/10.1007/s00526-020-01847-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00526-020-01847-w" target="_blank" >10.1007/s00526-020-01847-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary

  • Original language description

    We consider a boundary value problem for a homogeneous elliptic equation with an inhomogeneous Steklov boundary condition. The problem involves a singular perturbation, which is the Dirichlet condition imposed on a small piece of the boundary. We rewrite such problem to a resolvent equation for a self-adjoint operator in a fractional Sobolev space on the boundary of the domain. We prove the norm convergence of this operator to a limiting one associated with an unperturbed problem involving no Dirichlet condition. We also establish an order sharp estimate for the convergence rate. The established convergence implies the convergence of the spectra and spectral projectors. In the second part of the work we study perturbed eigenvalues converging to limiting simple discrete ones. We construct two-terms asymptotic expansions for such eigenvalues and for the associated eigenfunctions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS

  • ISSN

    0944-2669

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    44

  • Pages from-to

    "Article Number: 48"

  • UT code for WoS article

    000614436100001

  • EID of the result in the Scopus database

    2-s2.0-85100394689