SPECTRUM OF THE LAPLACIAN IN A NARROW CURVED STRIP WITH COMBINED DIRICHLET AND NEUMANN BOUNDARY CONDITIONS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F09%3A00330433" target="_blank" >RIV/61389005:_____/09:00330433 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
SPECTRUM OF THE LAPLACIAN IN A NARROW CURVED STRIP WITH COMBINED DIRICHLET AND NEUMANN BOUNDARY CONDITIONS
Original language description
We consider the Laplacian in a domain squeezed between two parallel curves in the plane, subject to Dirichlet boundary conditions on one of the curves and Neumann boundary conditions on the other. We derive two-term asymptotics for eigenvalues in the limit when the distance between the curves tends to zero. The asymptotics are uniform and local in the sense that the coefficients depend only on the extremal points where the ratio of the curvature radii of the Neumann boundary to the Dirichlet one is thebiggest. We also show that the asymptotics can be obtained from a form of norm-resolvent convergence which takes into account the width-dependence of the domain of definition of the operators involved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Esaim-Control Optimisation and Calculus of Variations
ISSN
1262-3377
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
3
Country of publishing house
FR - FRANCE
Number of pages
14
Pages from-to
—
UT code for WoS article
000268125200004
EID of the result in the Scopus database
—