Eigenvalue inequalities for the Laplacian with mixed boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F17%3A00475670" target="_blank" >RIV/61389005:_____/17:00475670 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2017.02.043" target="_blank" >http://dx.doi.org/10.1016/j.jde.2017.02.043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2017.02.043" target="_blank" >10.1016/j.jde.2017.02.043</a>
Alternative languages
Result language
angličtina
Original language name
Eigenvalue inequalities for the Laplacian with mixed boundary conditions
Original language description
nequalities for the eigenvalues of the (negative) Laplacian subject to mixed boundary conditions on polyhedral and more general bounded domains are established. The eigenvalues subject to a Dirichlet boundary condition on a part of the boundary and a Neumann boundary condition on the remainder of the boundary are estimated in terms of either Dirichlet or Neumann eigenvalues. The results complement several classical inequalities between Dirichlet and Neumann eigenvalues due to Polya, Payne, Levine and Weinberger, Friedlander, and others.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
263
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
491-508
UT code for WoS article
000400123300016
EID of the result in the Scopus database
2-s2.0-85015793178