All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50005418" target="_blank" >RIV/62690094:18470/16:50005418 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1017/S0308210516000019" target="_blank" >http://dx.doi.org/10.1017/S0308210516000019</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0308210516000019" target="_blank" >10.1017/S0308210516000019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve

  • Original language description

    We consider an infinite planar straight strip perforated by small holes along a curve. In such a domain, we consider a general second-order elliptic operator subject to classical boundary conditions on the holes. Assuming that the perforation is non-periodic and satisfies rather weak assumptions, we describe all possible homogenized problems. Our main result is the norm-resolvent convergence of the perturbed operator to a homogenized one in various operator norms and the estimates for the rate of convergence. On the basis of the norm-resolvent convergence, we prove the convergence of the spectrum.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the Royal Society of Edinburgh. Section A: Mathematics

  • ISSN

    0308-2105

  • e-ISSN

  • Volume of the periodical

    146

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    44

  • Pages from-to

    1115-1158

  • UT code for WoS article

    000388874800001

  • EID of the result in the Scopus database