All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homogenization for operators with arbitrary perturbations in coefficients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021094" target="_blank" >RIV/62690094:18470/23:50021094 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jde.2023.05.048" target="_blank" >https://doi.org/10.1016/j.jde.2023.05.048</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2023.05.048" target="_blank" >10.1016/j.jde.2023.05.048</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homogenization for operators with arbitrary perturbations in coefficients

  • Original language description

    We consider a general second order matrix operator in a multi-dimensional domain subject to a classical boundary condition. We perturbed it by a first order differential operator arbitrarily depending on a small multi-dimensional parameter and we study the existence of a limiting (homogenized) operator in the sense of the norm resolvent convergence. The first part of our main results states that the norm resolvent convergence is equivalent to the convergence of the coefficients in the perturbing operator in certain space of multipliers. The second part of our results says that the convergence in the mentioned spaces of multipliers is equivalent to the convergence of certain local mean values over small pieces of the considered domains. These results are supported by series of examples. We also provide a series of ways of generating new non-periodically oscillating perturbations for which our results are applicable.&amp; COPY; 2023 Elsevier Inc. All reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-18739S" target="_blank" >GA22-18739S: Asymptotic and spectral analysis of operators in mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of differential equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Volume of the periodical

    369

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    53

  • Pages from-to

    41-93

  • UT code for WoS article

    001024726500001

  • EID of the result in the Scopus database

    2-s2.0-85161645642