Lie algebra type noncommutative phase spaces are Hopf algebroids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F17%3A50005717" target="_blank" >RIV/62690094:18470/17:50005717 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs11005-016-0908-9" target="_blank" >https://link.springer.com/article/10.1007%2Fs11005-016-0908-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11005-016-0908-9" target="_blank" >10.1007/s11005-016-0908-9</a>
Alternative languages
Result language
angličtina
Original language name
Lie algebra type noncommutative phase spaces are Hopf algebroids
Original language description
For a noncommutative configuration space whose coordinate algebra is the universal enveloping algebra of a finite-dimensional Lie algebra, it is known how to introduce an extension playing the role of the corresponding noncommutative phase space, namely by adding the commuting deformed derivatives in a consistent and nontrivial way; therefore, obtaining certain deformed Heisenberg algebra. This algebra has been studied in physical contexts, mainly in the case of the kappa-Minkowski space-time. Here, we equip the entire phase space algebra with a coproduct, so that it becomes an instance of a completed variant of a Hopf algebroid over a noncommutative base, where the base is the enveloping algebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Letters in mathematical physics
ISSN
0377-9017
e-ISSN
—
Volume of the periodical
107
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
29
Pages from-to
475-503
UT code for WoS article
000394280200005
EID of the result in the Scopus database
—