All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lie algebra type noncommutative phase spaces are Hopf algebroids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F17%3A50005717" target="_blank" >RIV/62690094:18470/17:50005717 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs11005-016-0908-9" target="_blank" >https://link.springer.com/article/10.1007%2Fs11005-016-0908-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11005-016-0908-9" target="_blank" >10.1007/s11005-016-0908-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lie algebra type noncommutative phase spaces are Hopf algebroids

  • Original language description

    For a noncommutative configuration space whose coordinate algebra is the universal enveloping algebra of a finite-dimensional Lie algebra, it is known how to introduce an extension playing the role of the corresponding noncommutative phase space, namely by adding the commuting deformed derivatives in a consistent and nontrivial way; therefore, obtaining certain deformed Heisenberg algebra. This algebra has been studied in physical contexts, mainly in the case of the kappa-Minkowski space-time. Here, we equip the entire phase space algebra with a coproduct, so that it becomes an instance of a completed variant of a Hopf algebroid over a noncommutative base, where the base is the enveloping algebra.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Letters in mathematical physics

  • ISSN

    0377-9017

  • e-ISSN

  • Volume of the periodical

    107

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    29

  • Pages from-to

    475-503

  • UT code for WoS article

    000394280200005

  • EID of the result in the Scopus database