Holonomy Classification of Lorentz-Kähler Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50014876" target="_blank" >RIV/62690094:18470/19:50014876 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs12220-018-0027-1#citeas" target="_blank" >https://link.springer.com/article/10.1007%2Fs12220-018-0027-1#citeas</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12220-018-0027-1" target="_blank" >10.1007/s12220-018-0027-1</a>
Alternative languages
Result language
angličtina
Original language name
Holonomy Classification of Lorentz-Kähler Manifolds
Original language description
The classification problem for holonomy of pseudo-Riemannian manifolds is actual and open. In the present paper, holonomy algebras of Lorentz-Kähler manifolds are classified. A simple construction of a metric for each holonomy algebra is given. Complex Walker coordinates are introduced and described using the potential. Complex pp-waves are characterized in terms of the curvature, holonomy, and the potential. Classification of Lorentz-Kähler symmetric spaces is reviewed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometric Analysis
ISSN
1050-6926
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
34
Pages from-to
1075-1108
UT code for WoS article
000473593300004
EID of the result in the Scopus database
—