All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50017605" target="_blank" >RIV/62690094:18470/19:50017605 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.worldscientific.com/doi/abs/10.1142/S0219199717500894" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0219199717500894</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219199717500894" target="_blank" >10.1142/S0219199717500894</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds

  • Original language description

    For each simple Lie algebra g (excluding, for trivial reasons, type C), we find the lowest possible degree of an invariant second-order PDE over the adjoint variety in Pg, a homogeneous contact manifold. Here a PDE F (x(i), u, u(i),( )u(ij)) = 0 has degree &lt;= d if F is a polynomial of degree &lt;= d in the minors of (u(ij)), with coefficient functions of the contact coordinate x(i), u, u(i) (e.g., Monge-Ampbre equations have degree 1). For g of type A or G(2), we show that this gives all invariant second-order PDEs. For g of types B and D, we provide an explicit formula for the lowest-degree invariant second-order PDEs. For g of types E and F-4, we prove uniqueness of the lowest-degree invariant second-order PDE; we also conjecture that uniqueness holds in type D.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Contemporary Mathematics

  • ISSN

    0219-1997

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    54

  • Pages from-to

    "Article Number: 1750089"

  • UT code for WoS article

    000457113400003

  • EID of the result in the Scopus database