All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

INTEGRABLE REDUCTIONS OF THE DRESSING CHAIN

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50019994" target="_blank" >RIV/62690094:18470/19:50019994 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aimsciences.org/article/doi/10.3934/jcd.2019014" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/jcd.2019014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/jcd.2019014" target="_blank" >10.3934/jcd.2019014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    INTEGRABLE REDUCTIONS OF THE DRESSING CHAIN

  • Original language description

    In this paper we construct a family of integrable reductions of the dressing chain, described in its Lotka-Volterra form. For each k,n is an element of N with n &gt;= 2k +1 we obtain a Lotka-Volterra system LVb(n, k) on R-n which is a deformation of the Lotka-Volterra system LV(n, k), which is itself an integrable reduction of the 2m+1-dimensional Bogoyavlenskij-Itoh system LV(2m+1, m), where m = n - k - 1. We prove that LVb(n, k) is both Liouville and non-commutative integrable, with rational first integrals which are deformations of the rational first integrals of LV(n, k). We also construct a family of discretizations of LVb(n, 0), including its Kahan discretization, and we show that these discretizations are also Liouville and superintegrable.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF COMPUTATIONAL DYNAMICS

  • ISSN

    2158-2491

  • e-ISSN

    2158-2505

  • Volume of the periodical

    6

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    30

  • Pages from-to

    277-306

  • UT code for WoS article

    000675852800008

  • EID of the result in the Scopus database

    2-s2.0-85077521042