On Periodic Points of the Order of Appearance in the Fibonacci Sequence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016881" target="_blank" >RIV/62690094:18470/20:50016881 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/5/773" target="_blank" >https://www.mdpi.com/2227-7390/8/5/773</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8050773" target="_blank" >10.3390/math8050773</a>
Alternative languages
Result language
angličtina
Original language name
On Periodic Points of the Order of Appearance in the Fibonacci Sequence
Original language description
Let (F-n)(n >= 0) be the Fibonacci sequence. The order of appearance z(n) of an integer n >= 1 is defined by z (n) = min{k >= 1 : n vertical bar F-k}. Marques, and Somer and Krizek proved that all fixed points of the function z (n) have the form n = 5(k) or 12 . 5(k). In this paper, we shall prove that z(n) does not have any k-periodic points, for k >= 2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
"Article Number: 773"
UT code for WoS article
000542738100109
EID of the result in the Scopus database
—