Asymptotic analysis of mean exit time for dynamical systems with asingle well potential
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017077" target="_blank" >RIV/62690094:18470/20:50017077 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039620302229/pdfft?md5=998bcec5efc4f4e26eb8f35724fd7749&pid=1-s2.0-S0022039620302229-main.pdf" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620302229/pdfft?md5=998bcec5efc4f4e26eb8f35724fd7749&pid=1-s2.0-S0022039620302229-main.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.04.045" target="_blank" >10.1016/j.jde.2020.04.045</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic analysis of mean exit time for dynamical systems with asingle well potential
Original language description
We study the mean exit time from a bounded multi-dimensional domain Omega of the stochastic process governed by the overdamped Langevin dynamics. This mean exit time solves the boundary value problem (-epsilon(2)Delta + del V . del)u(epsilon) = 1 in Omega, u(epsilon) = 0 on partial derivative Omega, epsilon -> 0. The function Vis smooth enough and has the only minimum at the origin contained in Omega; the minimum can be degenerate. At other points of Omega, the gradient of Vis non-zero and the normal derivative of Vat the boundary partial derivative Omega does not vanish. Our main result is a complete asymptotic expansion for u(epsilon). The asymptotics for u(epsilon) involves an exponentially large term, which we find in a closed form. We also construct a power in epsilon asymptotic expansion such that this expansion and a mentioned exponentially large term approximate u(epsilon) up to arbitrary power of epsilon. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of differential equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
269
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
39
Pages from-to
78-116
UT code for WoS article
000538395600004
EID of the result in the Scopus database
—