All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Asymptotic analysis of mean exit time for dynamical systems with asingle well potential

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017077" target="_blank" >RIV/62690094:18470/20:50017077 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022039620302229/pdfft?md5=998bcec5efc4f4e26eb8f35724fd7749&pid=1-s2.0-S0022039620302229-main.pdf" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620302229/pdfft?md5=998bcec5efc4f4e26eb8f35724fd7749&pid=1-s2.0-S0022039620302229-main.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2020.04.045" target="_blank" >10.1016/j.jde.2020.04.045</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Asymptotic analysis of mean exit time for dynamical systems with asingle well potential

  • Original language description

    We study the mean exit time from a bounded multi-dimensional domain Omega of the stochastic process governed by the overdamped Langevin dynamics. This mean exit time solves the boundary value problem (-epsilon(2)Delta + del V . del)u(epsilon) = 1 in Omega, u(epsilon) = 0 on partial derivative Omega, epsilon -&gt; 0. The function Vis smooth enough and has the only minimum at the origin contained in Omega; the minimum can be degenerate. At other points of Omega, the gradient of Vis non-zero and the normal derivative of Vat the boundary partial derivative Omega does not vanish. Our main result is a complete asymptotic expansion for u(epsilon). The asymptotics for u(epsilon) involves an exponentially large term, which we find in a closed form. We also construct a power in epsilon asymptotic expansion such that this expansion and a mentioned exponentially large term approximate u(epsilon) up to arbitrary power of epsilon. (C) 2020 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of differential equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    269

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

    78-116

  • UT code for WoS article

    000538395600004

  • EID of the result in the Scopus database