All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017844" target="_blank" >RIV/62690094:18470/21:50017844 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/genes12010050" target="_blank" >https://doi.org/10.3390/genes12010050</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/genes12010050" target="_blank" >10.3390/genes12010050</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics

  • Original language description

    The study of fish cytogenetics has been impeded by the inability to produce G-bands that could assign chromosomes to their homologous pairs. Thus, the majority of karyotypes published have been estimated based on morphological similarities of chromosomes. The reason why chromosome G-banding does not work in fish remains elusive. However, the recent increase in the number of fish genomes assembled to the chromosome level provides a way to analyse this issue. We have developed a Python tool to visualize and quantify GC percentage (GC%) of both repeats and unique DNA along chromosomes using a non-overlapping sliding window approach. Our tool profiles GC% and simultaneously plots the proportion of repeats (rep%) in a color scale (or vice versa). Hence, it is possible to assess the contribution of repeats to the total GC%. The main differences are the GC% of repeats homogenizing the overall GC% along fish chromosomes and a greater range of GC% scattered along fish chromosomes. This may explain the inability to produce G-banding in fish. We also show an occasional banding pattern along the chromosomes in some fish that probably cannot be detected with traditional qualitative cytogenetic methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Genes

  • ISSN

    2073-4425

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    "Article Number: 50"

  • UT code for WoS article

    000610250400001

  • EID of the result in the Scopus database

    2-s2.0-85098765760