On the characteristic polynomial of (k, p) -Fibonacci sequence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017869" target="_blank" >RIV/62690094:18470/21:50017869 - isvavai.cz</a>
Result on the web
<a href="https://advancesindifferenceequations.springeropen.com/track/pdf/10.1186/s13662-020-03186-8.pdf" target="_blank" >https://advancesindifferenceequations.springeropen.com/track/pdf/10.1186/s13662-020-03186-8.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13662-020-03186-8" target="_blank" >10.1186/s13662-020-03186-8</a>
Alternative languages
Result language
angličtina
Original language name
On the characteristic polynomial of (k, p) -Fibonacci sequence
Original language description
Recently, Bednarz introduced a new two-parameter generalization of the Fibonacci sequence, which is called the (k, p) -Fibonacci sequence and denoted by (Fk,p(n))n≥0. In this paper, we study the geometry of roots of the characteristic polynomial of this sequence.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in difference equations
ISSN
1687-1847
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
"Article number: 28"
UT code for WoS article
000609498700020
EID of the result in the Scopus database
2-s2.0-85098852170